Association of the muscle hypertrophy locus with carcass traits in beef cattle.
نویسندگان
چکیده
A locus near the centromere of bovine chromosome 2 is responsible for muscle hypertrophy (mh) in cattle. The objectives of this study were to refine the genomic region in which the locus resides and to assess the effects of a single copy of the mh allele on carcass and birth traits. Two half-sib families were developed using a Belgian Blue x MARC III (n = 246) or a Piedmontese x Angus (n = 209) sire. Traits analyzed were calving ease (CE), birth weight (BWT, kg), longissimus rib eye area (REA), retail product yield (RPYD), USDA yield grade (YG), marbling (MAR), fat thickness (FAT), estimated kidney, pelvic, and heart fat (KPH), and longissimus tenderness measured as Warner-Bratzler shear force at 3 (S3) and 14 (S14) d postmortem. Six microsatellites were used to determine the presence or absence of the mh allele and to confirm the location of the locus affecting the traits, which was assessed to be 4 cM from the beginning of the linkage group, with the 95% confidence interval between 2 and 6 cM. Cattle with an mh allele had increased (P < .01) REA, RPYD, and BWT and decreased MAR, YG, FAT, and KPH, compared with those without the allele. The effects of the mh allele (mh/+ vs +/+) were 1.35, 1.6, .41, -1.01, -1.42, -.84, and -.86 residual standard deviations, respectively. There were no effects (P > .10) for CE, S3, and S14. Allelic differences due to the mh locus were similar for both sources (Belgian Blue or Piedmontese). Individuals inheriting a single mh allele had a leaner, more heavily muscled carcass compared with those inheriting the alternative allele. Thus, mating schemes that maximize production of mh/+ genotypes provide a viable approach for improving carcass composition.
منابع مشابه
Polymorphism of MyoD1 and Myf6 genes and associations with carcass and meat quality traits in beef cattle.
Myogenic determination factor 1 (MyoD1) and myogenic factor 6 (Myf6) genes belong to the myogenic differentiation (MyoD) gene family, which play key roles in growth and muscle development. The study aimed to investigate the effects of variants in cattle MyoD1 and Myf6 on carcass and meat traits. We screened single nucleotide polymorphisms (SNPs) of both genes in 8 cattle populations, including ...
متن کاملGenome-Wide Association Study Reveals the PLAG1 Gene for Knuckle, Biceps and Shank Weight in Simmental Beef Cattle
Carcass traits of beef cattle have been genetically improved to increase yield of high quality meat. Genome-wide association study (GWAS) is a powerful method to identify genetic variants associated with carcass traits. For the 770K genotyped SNPs from 1141 Chinese Simmental cattle, we used the compressed mixed linear model (CMLM) to perform a genome-wide association study for knuckle, biceps a...
متن کاملFour SNPs of insulin-induced gene 1 associated with growth and carcass traits in Qinchuan cattle in China.
The insulin-induced gene 1 (Insig-1) is a regulator of lipid metabolism and plays an important role in the sterol-mediated regulation of SREBP, SCAP and HMG-CoA reductase. We used PCR-RFLP and DNA sequencing to detect polymorphisms of the Insig-1 gene in 215 individuals of the Qinchuan cattle breed. Four SNPs [4366(A>G), 4534(T>C), 5001(T>C), and 5235(G>A)] were indentified. The associati...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملHistorical Overview of the Effect of β-Adrenergic Agonists on Beef Cattle Production
Postnatal muscle hypertrophy of beef cattle is the result of enhanced myofibrillar protein synthesis and reduced protein turnover. Skeletal muscle hypertrophy has been studied in cattle fed β-adrenergic agonists (β-AA), which are receptor-mediated enhancers of protein synthesis and inhibitors of protein degradation. Feeding β-AA to beef cattle increases longissimus muscle cross-sectional area 6...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 76 2 شماره
صفحات -
تاریخ انتشار 1998